Local and global strong solutions to continuous coagulation-fragmentation equations with diffusion

نویسندگان

  • Herbert Amann
  • Christoph Walker
چکیده

We consider the diffusive continuous coagulation-fragmentation equations with and without scattering and show that they admit unique strong solutions for a large class of initial values. If the latter values are small with respect to a suitable norm, we provide sufficient conditions for global-in-time existence in the absence of fragmentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global strict solutions to continuous coagulation-fragmentation equations with strong fragmentation

In this paper we give an elementary proof of the unique, global-in-time solvability of the coagulation-(multiple) fragmentation equation with polynomially bounded fragmentation and particle production rates and a bounded coagulation rate. The proof relies on a new result concerning domain invariance for the fragmentation semigroup which is based on a simple monotonicity argument.

متن کامل

Coagulation-fragmentation Processes

We study the well-posedness of coagulation-fragmentation models with diiusion for large systems of particles. The continuous and the discrete case are considered simultaneously. In the discrete situation we are concerned with a countable system of coupled reaction-diiusion equations, whereas the continuous case amounts to an uncountable system of such equations. These problems can be handled by...

متن کامل

A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations

This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...

متن کامل

Regularity and mass conservation for discrete coagulation-fragmentation equations with diffusion

We present a new a-priori estimate for discrete coagulation-fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this...

متن کامل

The Continuous Coagulation Equation with Multiple Fragmentation

We present a proof of the existence of solutions to the continuous coagulation equation with multiple fragmentation whenever the kernels satisfy certain growth conditions. The proof relies on weak L compactness methods applied to suitably chosen approximating equations. The question of uniqueness is also considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004